
Statistical Analysis with R
- a quick start -

OLEG NENADIĆ, WALTER ZUCCHINI

September 2004

Contents

1 An Introduction to R 3
1.1 Downloading and Installing R . 3
1.2 Getting Started . 3
1.3 Statistical Distributions . 8
1.4 Writing Custom R Functions . 10

2 Linear Models 12
2.1 Fitting Linear Models in R . 12
2.2 Generalized Linear Models . 20
2.3 Extensions . 21

3 Time Series Analysis 23
3.1 Classical Decomposition . 23
3.2 Exponential Smoothing . 29
3.3 ARIMA–Models . 31

4 Advanced Graphics 36
4.1 Customizing Plots . 36
4.2 Mathematical Annotations . 39
4.3 Three-Dimensional Plots . 41
4.4 RGL: 3D Visualization in R using OpenGL 43

A R–functions 44
A.1 Mathematical Expressions (expression()) 44
A.2 The RGL Functionset . 46

1

Preface

This introduction to the freely available statistical software package R is primar-
ily intended for people already familiar with common statistical concepts. Thus
the statistical methods used to illustrate the package are not explained in de-
tail. These notes are not meant to be a reference manual, but rather a hands-on
introduction for statisticians who are unfamiliar with R. The intention is to of-
fer just enough material to get started, to motivate beginners by illustrating the
power and flexibility of R, and to show how simply it enables the user to carry
out sophisticated statistical computations and to produce high-quality graphical
displays.

The notes comprise four sections, which build on each other and should there-
fore be read sequentially. The first section (An Introduction to R) introduces the
most basic concepts. Occasionally things are simplified and restricted to the min-
imum background in order to avoid obscuring the main ideas by offering too
much detail. The second and the third section (Linear Models and Time Series
Analysis) illustrate some standard R commands pertaining to these two common
statistical topics. The fourth section (Advanced Graphics) covers some of the ex-
cellent graphical capabilities of the package.

Throughout the text typewriter font is used for annotating R functions and
options. R functions are given with brackets, e.g. plot() while options are
typed in italic typewriter font, e.g. xlab="x label" . R commands which are
entered by the user are printed in red and the output from R is printed in blue.
The datasets used are available from the URI http://134.76.173.220/R workshop.

An efficient (and enjoyable) way of beginning to master R is to actively use it,
to experiment with it’s functions and options and to write own functions. It is
not necessary to study lengthy manuals in order to get started; one can get use-
ful work done almost immediately. Thus, the main goal of this introduction is to
motivate the reader to actively explore R. Good luck!

2

Chapter 1

An Introduction to R

1.1 Downloading and Installing R

R is a widely used environment for statistical analysis. The striking difference
between R and most other statistical packages is that it is free software and that
it is maintained by scientists for scientists. Since its introduction in 1996 by R.
Ihaka and R. Gentleman, the R project has gained many users and contributors
who continuously extend the capabilities of R by releasing add–ons (packages)
that offer new functions and methods, or improve the existing ones.
One disadvantage or advantage, depending on the point of view, is that R is used
within a command–line interface, which imposes a slightly steeper learning curve
than other software. But, once this hurdle has been overcome, R offers almost un-
limited possibilities for statistical data analysis.

R is distributed by the “Comprehensive R Archive Network” (CRAN) – it is avail-
able from the URI: http://cran.r-project.org. The current version of R (1.9.1 as of
September 2004, approx. 20 MB) for Windows can be downloaded by selecting
“R binaries” → “windows” → “base” and downloading the file “rw1091.exe” from
the CRAN–website. R can then be installed by executing the downloaded file.
The installation procedure is straightforward; one usually only has to specify the
target directory in which to install R. After the installation, R can be started like
any other application for Windows, that is by double–clicking on the correspond-
ing icon.

1.2 Getting Started

Since R is a command line based language, all commands are entered directly
into the console. A starting point is to use R as a substitute for a pocket calcula-
tor. By typing

2+3

3

1.2. GETTING STARTED – 4 –

into the console, R adds 3 to 2 and displays the result. Other simple operators
include

2-3 # Subtraction
2*3 # Multiplication
2/3 # Division
2ˆ3 # 23

sqrt(3) # Square roots
log(3) # Logarithms (to the base e)

Operators can also be nested, e.g.

(2 - 3) * 3

first subtracts 3 from 2 and then multiplies the result with 3.
Often it can be useful to store results from operations for later use. This can be
done using the “assignment operator” <- , e.g. <-

test <- 2 * 3

performs the operation on the right hand side (2*3) and then stores the result
as an object named test . (One can also use = or even -> for assignments.) Fur-
ther operations can be carried out on objects, e.g.

2 * test

multiplies the value stored in test with 2. Note that objects are overwritten
without notice. The command ls() outputs the list of currently defined objects. ls()

Data types

As in other programming languages, there are different data types available in R,
namely “numeric”, “character” and “logical”. As the name indicates, “numeric”
is used for numerical values (double precision). The type “character” is used for
characters and is generally entered using quotation marks:

myname <- "what"
myname

However, it is not possible (nor meaningful) to apply arithmetic operators on
character data types. The data type “logical” is used for boolean variables: (TRUE
or T, and FALSEor F).

1.2. GETTING STARTED – 5 –

Object types

Depending on the structure of the data, R recognises 4 standard object types:
“vectors”, “matrices”, “data frames” and “lists”. Vectors are one–dimensional ar-
rays of data; matrices are two–dimensional data arrays. Data frames and lists are
further generalizations and will be covered in a later section.

Creating vectors in R
There are various means of creating vectors in R. E.g. in case one wants to save
the numbers 3, 5, 6, 7, 1 as mynumbers , one can use the c() command: c()

mynumbers <- c(3, 5, 6, 7, 1)

Further operations can then be carried out on the R object mynumbers . Note
that arithmetic operations on vectors (and matrices) are carried out component–
wise, e.g. mynumbers*mynumbers returns the squared value of each component
of mynumbers .
Sequences can be created using either “: ” or seq() : :

1:10

creates a vector containing the numbers 1, 2, 3, . . . , 10. The seq() command al- seq()

lows the increments of the sequence to be specified:

seq(0.5, 2.5, 0.5)

creates a vector containing the numbers 0.5, 1, 1.5, 2, 2.5. Alternatively one can
specify the length of the sequence:

seq(0.5, 2.5, length = 100)

creates a sequence from 0.5 to 2.5 with the increments chosen such that the re-
sulting sequence contains 100 equally spaced values.

Creating matrices in R
One way of creating a matrix in R is to convert a vector of length n ·m into a n×m
matrix:

mynumbers <- 1:12
matrix(mynumbers, nrow = 4) matrix()

Note that the matrix is created columnwise – for rowwise construction one has to
use the option byrow=TRUE:

matrix(mynumbers, nrow = 4, byrow = TRUE)

1.2. GETTING STARTED – 6 –

An alternative way for constructing matrices is to use the functions cbind()
and rbind() , which combine vectors (row- or columnwise) to a matrix:

mynumbers1 <- 1:4
mynumbers2 <- 11:14
cbind(mynumbers1, mynumbers2) cbind()

rbind(mynumbers1, mynumbers2)
rbind()

Accessing elements of vectors and matrices
Particular elements of R vectors and matrices can be accessed using square brack-
ets. Assume that we have created the following R objects vector1 and matrix1 :

vector1 <- seq(-3, 3, 0.5)
matrix1 <- matrix(1:20, nrow = 5)

Some examples of how to access particular elements are given below:

vector1[5] # returns the 5th element of vector1
vector1[1:3] # returns the first three elements of vector1
vector1[c(2, 4, 5)] # returns the 2nd, 4th and 5th element of

vector1
vector1[-5] # returns all elements except for the 5th one

Elements of matrices are accessed in a similar way. matrix1[a,b] returns the
value from the a–th row and the b–th column of matrix1 :

matrix1[2,] # returns the 2nd row of matrix1
matrix1[,3] # returns the 3rd column of matrix1
matrix1[2, 3] # returns the value from matrix1 in the

2nd row and 3rd column
matrix1[1:2, 3] # returns the value from matrix1 in the first

two rows and the 3rd column

Example: Plotting functions
Assume that you were to plot a function by hand. One possibility of doing it is to

1. Select some x–values from the range to be plotted

2. Compute the corresponding y = f(x) values

3. Plot x against y

4. Add a (more or less) smooth line connecting the (x, y)–points

1.2. GETTING STARTED – 7 –

Graphs of functions are created in essentially the same way in R, e.g. plotting the
function f(x) = sin(x) in the range of −π to π can be done as follows:

x <- seq(-pi, pi, length = 10) # defines 10 values from −π to π
y <- sin(x) # computes the corresponding

y–values
plot(x, y) # plots x against y plot()

lines(x, y) # adds a line connecting the
(x, y)–points lines()

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

a): length(x)=10

x

y

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

b): length(x)=1000

x

y

Figure 1.1: Plotting sin(x) in R.

The output is shown in the left part of figure 1.1. However, the graph does not
look very appealing since it lacks smoothness. A simple “trick” for improving
the graph is to simply increase the number of x–values at which f(x) is evalu-
ated, e.g. to 1000:

x <- seq(-pi, pi, length = 1000)
y <- sin(x)
plot(x, y, type = "l")

The result is shown in the right part of figure 1.1. Note the use of the option
type="l" , which causes the graph to be drawn with connecting lines rather than
points.

1.3. STATISTICAL DISTRIBUTIONS – 8 –

1.3 Statistical Distributions

The names of the R functions for distributions comprise two parts. The first part
(the first letter) indicates the “function group”, and the second part (the remain-
der of the function name) indicates the distribution. The following “function
groups” are available:

• probability density function (d)

• cumulative distribution function (p)

• quantile function (q)

• random number generation (r)

Common distributions have their corresponding R “names”:

distribution R name distribution R name distribution R name
normal norm t t χ2 chisq

exponential exp f f uniform unif
log-normal lnorm beta beta gamma gamma

logistic logis weibull weibull cauchy cauchy
geometric geom binomial binom hypergeometric hyper

poisson pois negative binomial nbinom

E.g., random numbers (r) from the normal distribution (norm) can be drawn us-
ing the rnorm() function; quantiles (q) of the χ2–distribution (chisq) are ob-
tained with qchisq() .
The following examples illustrate the use of the R functions for computations in-
volving statistical distributions:

rnorm(10) # draws 10 random numbers from a standard
normal distribution

rnorm(10, 5, 2) # draws 10 random numbers from a N(µ = 5,σ = 2)
distribution

pnorm(0) # returns the value of a standard normal cdf at t = 0
qnorm(0.5) # returns the 50% quantile of the standard normal

distribution

Examples for handling distributions
Assume that we want to generate 50 (standard) normally distributed random
numbers and to display them as a histogram. Additionally, we want to add the
pdf of the (“fitted”) normal distribution to the plot as shown in figure 1.2:

1.3. STATISTICAL DISTRIBUTIONS – 9 –

mysample <- rnorm(50) # generates random numbers
hist(mysample, prob = TRUE) # draws the histogram hist()

mu <- mean(mysample) # computes the sample mean
mean()

sigma <- sd(mysample) # computes the sample standard
deviation sd()

x <- seq(-4, 4, length = 500) # defines x–values for the pdf
y <- dnorm(x, mu, sigma) # computes the normal pdf
lines(x, y) # adds the pdf as “lines” to the plot

Histogram of mysample

mysample

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 1.2: Histogram of normally distributed random numbers and “fitted” den-
sity.

Another example (figure 1.3) is the visualization of the approximation of the bi-
nomial distribution with the normal distribution for e.g. n = 50 and π = 0.25:

x <- 0:50 # defines the x–values
y <- dbinom(x, 50, 0.25) # computes the binomial

probabilities
plot(x, y, type="h") # plots binomial probabilities
x2 <- seq(0, 50, length = 500) # defines x–values (for the

normal pdf)
y2 <- dnorm(x2, 50*0.25,

sqrt(50*0.25*(1-0.25))) # computes the normal pdf
lines(x2, y2, col = "red") # draws the normal pdf

1.4. WRITING CUSTOM R FUNCTIONS – 10 –

0 10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

Comparison: Binomial distribution and normal approximation

x

y

Figure 1.3: Comparing the binomial distribution with n = 50 and π = 0.25 with
an approximation by the normal distribution (µ = n · π, σ =

√
n · π · (1− π)).

1.4 Writing Custom R Functions

In case R does not offer a required function, it is possible to write a custom one.
Assume that we want to compute the geometric mean of a sample:

µG =
n∏

i=1

xi

1
n = e

1
n

∑
i

log(xi)

Since R doesn’t have a function for computing the geometric mean, we have to
write our own function geo.mean() :

fix(geo.mean) fix()

opens an editor window where we can enter our function:

1.4. WRITING CUSTOM R FUNCTIONS – 11 –

function(x) function()

{
n <- length(x)
gm <- exp(mean(log(x)))
return(gm)

}

Note that R checks the function after closing and saving the editor–window. In
case of “structural” errors (the most common case for that are missing brackets),
R reports these to the user. In order to fix the error(s), one has to enter

geo.mean <- edit() edit()

since the (erroneous) results are not saved. (Using fix(geo.mean) results in
loosing the last changes.)

Chapter 2

Linear Models

2.1 Fitting Linear Models in R

This section focuses on the three “main types” of linear models: Regression, Anal-
ysis of Variance and Analysis of Covariance.

Simple regression analysis

The dataset “strength”, which is stored as ’strength.dat’, contains measurements
on the ability of workers to perform physically demanding tasks. It contains the
measured variables “grip”, “arm”, “rating” and “sims” collected from 147 per-
sons. The dataset can be imported into R with

strength <- read.table("C:/R workshop/strength.dat",
header = TRUE) read.table()

The command read.table() reads a file into R assuming that the data is struc-
tured as a matrix (table). It assumes that the entries of a row are separated by
blank spaces (or any other suitable separator) and the rows are separated by line
feeds. The option header=TRUE tells R that the first row is used for labelling the
columns.
In order to get an overview over the relation between the 4 (quantitative) vari-
ables, one can use

pairs(strength) pairs()

which creates a matrix of scatterplots for the variables.
Let’s focus on the relation between “grip” (1st column) and “arm” (2nd column).
The general function for linear models is lm() . Fitting the model

gripi = β0 + β1 · armi + ei

can be done using

12

2.1. FITTING LINEAR MODELS IN R – 13 –

fit <- lm(strength[,1]˜strength[,2]) lm()

fit

The function lm() returns a list object which we have saved under some name,
e.g. as fit . As previously mentioned, lists are a generalized object–type; a list
can contain several objects of different types and modes arranged into a single
object. The names of the entries stored in a list can be viewed using

names(fit) names()

One entry in this list is coefficients which contains the coefficients of the
fitted model. The coefficients can be accessed using the “$”–sign:

fit$coefficients

returns a vector (in this case of length 2) containing the estimated parameters
(β̂0 and β̂1). Another entry is residuals , which contains the residuals of the
fitted model:

res <- fit$residuals

Before looking further at our fitted model, let us briefly examine the residuals.
A first insight is given by displaying the residuals as a histogram:

hist(res, prob = TRUE, col = "red") hist()

An alternative is to use a kernel density estimate and to display it along with
the histogram:

lines(density(res), col = "blue")

The function density() computes the kernel density estimate (other methods density()

for kernel density estimation will be discussed in a later section).
Here one might also wish to add the pdf of the normal distribution to the graph:

mu <- mean(res)
sigma <- sd(res)
x <- seq(-60, 60, length = 500)
y <- dnorm(x, mu, sigma)
lines(x, y, col = 6)

2.1. FITTING LINEAR MODELS IN R – 14 –

Histogram of res

res

D
en

si
ty

−40 −20 0 20 40 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 2.1: Histogram of the model residuals with kernel density estimate and
fitted normal distribution.

There also exist alternative ways for (graphically) investigating the normality of
a sample, for example QQ-plots:

qqnorm(res) qqnorm()

draws the sample quantiles against the quantiles of a normal distribution as
shown in figure 2.2. Without going into detail, the ideal case is given when the
points lie on a straight line.

Another option is to specifically test for normality, e.g. using the Kolmogorov-
Smirnov test or the Shapiro-Wilks test:

ks.test(res, "pnorm", mu, sigma) ks.test()

performs the Kolmogorov-Smirnov test on res . Since this test can be used for
any distribution, one has to specify the distribution (pnorm) and its parameters
(mu and sigma). The Shapiro–Wilks test specifically tests for normality, so one
only has to specify the data:

shapiro.test(res) shapiro.test()

2.1. FITTING LINEAR MODELS IN R – 15 –

−2 −1 0 1 2

−
40

−
20

0
20

40

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.2: QQ-plot of residuals.

Now back to our fitted model. In order to display the observations together with
the fitted model, one can use the following code which creates the graph shown
in figure 2.3:

plot(strength[,2], strength[,1])
betahat <- fit$coefficients
x <- seq(0, 200, length = 500)
y <- betahat[1] + betahat[2]*x
lines(x, y, col = "red")

Another useful function in this context is summary() : summary()

summary(fit)

returns an output containing the values of the coefficients and other information:

2.1. FITTING LINEAR MODELS IN R – 16 –

20 40 60 80 100 120

50
10

0
15

0

strength[, 2]

st
re

ng
th

[,
1]

Figure 2.3: Observations (strength[,2] vs. strength[,1]) and fitted line.

Call:
lm(formula = strength[, 1] ˜ strength[, 2])

Residuals:
Min 1Q Median 3Q Max

-49.0034 -11.5574 0.4104 12.3367 51.0541

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.70811 5.88572 9.295 <2e-16 ***
strength[, 2] 0.70504 0.07221 9.764 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.42 on 145 degrees of freedom
Multiple R-Squared: 0.3967, Adjusted R-squared: 0.3925
F-statistic: 95.34 on 1 and 145 DF, p-value: < 2.2e-16

Analysis of Variance
Consider the dataset ’miete.dat’, which contains rent prices for apartments in a
German city. Two factors were also recorded: year of construction, and whether
the apartment was on the ground floor, first floor, ..., fourth floor. Again, the data
can be imported into R using the read.table() command:

rent <- read.table("C:/R workshop/miete.dat", header = TRUE)

2.1. FITTING LINEAR MODELS IN R – 17 –

In this case, rent is a matrix comprising three columns: The first one (“Bau-
jahr”) indicates the year of construction, the second one (“Lage”) indicates the
floor and the third column contains the rent prices (“Miete”) per a square meter.
We can start by translating the German labels into English:

names(rent) names()

returns the names of the rent objects. The names can be changed by typing

names(rent) <- c("year", "floor", "price")

into the console.
In order to examine the relationship between price and floor, one can use box-
plots for visualization. In order to do so, one needs to “extract” the rent prices for
each floor-group:

price <- rent[,3]
fl <- rent[,2]
levels(fl) levels()

Here we have saved the third column of rent as price and the second one as
fl . The command levels(fl) shows us the levels of fl (“a” to “e”). It is pos-
sible to perform queries using square brackets, e.g.

price[fl=="a"]

returns the prices for the apartments on floor “a” (ground floor in this case). Ac-
cordingly,

fl[price<7]

returns the floor levels whose corresponding rent prices (per m2) are less than
7 (Euro). These queries can be further expanded using logical AND (&) or OR (|)
operators:

fl[price<7 & price>5]

returns all floor levels whose corresponding rent prices are between 5 and 7
(Euro).

2.1. FITTING LINEAR MODELS IN R – 18 –

A convenient function is split(a,b) , which splits the data a by the levels given
in b. This can be used together with the function boxplot() :

boxplot(split(price, fl)) boxplot()

split()Accordingly, the relation between the year of construction and the price can be
visualized with

year <- rent[,1]
boxplot(split(price, year))

a b c d e

2
4

6
8

10
12

price vs. floor

B
00

−
48

B
49

−
60

B
61

−
69

B
70

−
79

B
80

−
89

2

4

6

8

10

12

price vs. year

Figure 2.4: Boxplots of the rent example. The left boxplot displays the relation
between price and floor; the right boxplot shows the relation between price and
year.

The analysis of variance can be carried out in two ways, either by treating it as a
linear model (lm()) or by using the function aov() , which is more convenient
in this case:

fit1a <- lm(price˜fl) lm()

summary(fit1a)

returns

2.1. FITTING LINEAR MODELS IN R – 19 –

Call:
lm(formula = price ˜ fl)

Residuals:
Min 1Q Median 3Q Max

-4.4132 -1.2834 -0.1463 1.1717 6.2987

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.8593 0.1858 36.925 <2e-16 ***
flb 0.0720 0.2627 0.274 0.784
flc -0.2061 0.2627 -0.785 0.433
fld 0.0564 0.2627 0.215 0.830
fle -0.1197 0.2627 -0.456 0.649

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.858 on 495 degrees of freedom
Multiple R-Squared: 0.003348, Adjusted R-squared: -0.004706
F-statistic: 0.4157 on 4 and 495 DF, p-value: 0.7974

On the other hand,

fit1b <- aov(price˜fl) aov()

summary(fit1b)

returns

Df Sum Sq Mean Sq F value Pr(>F)
fl 4 5.74 1.43 0.4157 0.7974
Residuals 495 1708.14 3.45

The “full” model (i.e. including year and floor as well as interactions) is analysed
with

fit2 <- aov(price˜fl+year+fl*year)
summary(fit2)

Df Sum Sq Mean Sq F value Pr(>F)
fl 4 5.74 1.43 0.7428 0.5632
year 4 735.26 183.81 95.1808 <2e-16 ***
fl:year 16 55.56 3.47 1.7980 0.0288 *
Residuals 475 917.33 1.93

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The interpretation of the tables is left to the reader.

2.2. GENERALIZED LINEAR MODELS – 20 –

Analysis of covariance
The extension to the analysis of covariance is straightforward. The dataset car is
based on data provided by the U.S. Environmental Protection Agency (82 cases).
It contains the following variables:

• BRAND Car manufacturer

• VOL Cubic feet of cab space

• HP Engine horsepower

• MPG Average miles per gallon

• SP Top speed (mph)

• WT Vehicle weight (10 lb)

Again, the data is imported using

car <- read.table("C:/R workshop/car.dat", header = TRUE)

attach(car) attach()

The attach command makes it possible to access columns of car by simply
entering their name. The first column can be accessed by either typing BRANDor
car[,1] into the console.
The model

MPGijk = µ + αi + θSPj + eijk ; αi : Effect of BRAND i

can be analysed in R with

fit3 <- aov(MPG˜BRAND+SP) aov()

summary(fit3)
summary()

Df Sum Sq Mean Sq F value Pr(>F)
BRAND 28 6206.7 221.7 8.6259 2.056e-11 ***
SP 1 564.5 564.5 21.9667 2.038e-05 ***
Residuals 52 1336.3 25.7

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2.2 Generalized Linear Models
Generalized linear models enable one to model response variables that follow
any distribution from the exponential family. The R function glm() fits general- glm()

ized linear models. The model formula is specified in the same way as in lm()

2.3. EXTENSIONS – 21 –

or aov() . The distribution of the response needs to be specified, as does the link
function, which expresses the monotone function of the conditional expectation
of the response variable that is to be modelled as a linear combination of the co-
variates.
In order to obtain help for an R-function, one can use the built–in help–system of
R:

?glm or help(glm) ?

help()Typically, the help–document contains information on the structure of the func-
tion, an explanation of the arguments, references, examples etc. In case of glm() ,
there are several examples given. The examples can be examined by copying the
code and pasting it into the R console. For generalized linear models, the infor-
mation retrieved by

?family family

is also relevant since it contains further information about the specification of
the error distribution and the link function.
The following example of how to use the glm() – function is given in the help–
file:

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ˜ outcome + treatment,

family=poisson())
anova(glm.D93)
summary(glm.D93)

The first three lines are used to create an R object with the data. The fourth line
(print()) displays the created data; the fitting is done in the fifth line with
glm() . The last two lines (anova() and summary()) are used for displaying
the results.

2.3 Extensions

An important feature of R is its extension system. Extensions for R are delivered
as packages (“libraries”), which can be loaded within R using the library()
command. Usually, packages contain functions, datasets, help files and other library()

files such as dlls (Further information on creating custom packages for R can be
found on the R website).
There exist a number of packages that offer extensions for linear models. The
package mgcv contains functions for fitting generalized additive models (gam());
routines for nonparametric density estimation and nonparametric regression are

2.3. EXTENSIONS – 22 –

offered by the sm package. An overview over the available R packages is given
at http://cran.r-project.org/src/contrib/PACKAGES.html.

For example, fitting a GAM to the car – dataset can be carried out as follows:

library(mgcv)
fit <- gam(MPG˜s(SP)) gam()

summary(fit)

The first line loads the package mgcv which contains the function gam() . In
the second line the variable MPG (Miles per Gallon) was modelled as a “smooth
function” of SP (Speed). Note that the structure of GAM formulae is almost iden-
tical to the standard ones in R – the only difference is the use of s() for indi-
cating smooth functions. A summary of the fitted model is again given by the
summary() – command.
Plotting the observations and the fitted model as shown in figure 2.5 can be done
in the following way:

plot(HP, MPG)
x <- seq(0, 350, length = 500)
y <- predict(fit, data.frame(HP = x))
lines(x, y, col = "red", lwd = 2)

In this case, the (generic) function predict() was used for “predicting” (i.e. predict()

obtaining ŷ at the specified values of the covariate, here x).

50 100 150 200 250 300

20
30

40
50

60

HP

M
P

G

Figure 2.5: Fitting a “simple” GAM to the car data.

Chapter 3

Time Series Analysis

3.1 Classical Decomposition

Linear Filtering of Time Series

A key concept in traditional time series analysis is the decomposition of a given
time series Xt into a trend Tt, a seasonal component St and the remainder or
residual, et.
A common method for obtaining the trend is to use linear filters on given time
series:

Tt =
∞∑

i=−∞
λiXt+i

A simple class of linear filters are moving averages with equal weights:

Tt =
1

2a + 1

a∑
i=−a

Xt+i

In this case, the filtered value of a time series at a given period τ is represented by
the average of the values {xτ−a, . . . , xτ , . . . , xτ+a}. The coefficients of the filtering
are { 1

2a+1
, . . . , 1

2a+1
}.

Consider the dataset tui , which contains stock data for the TUI AG from Jan., 3rd
2000 to May, 14th 2002, namely date (1st column), opening values (2nd column),
highest and lowest values (3rd and 4th column), closing values (5th column) and
trading volumes (6th column). The dataset has been exported from Excel c© as a
CSV–file (comma separated values). CSV–files can be imported into R with the
function read.csv() : read.csv()

tui <- read.csv("C:/R workshop/tui.csv", header = TRUE,
dec = ",", sep = ";")

The option dec specifies the decimal separator (in this case, a comma has been
used as a decimal separator. This option is not needed when a dot is used as a

23

3.1. CLASSICAL DECOMPOSITION – 24 –

decimal separator.) The option sep specifies the separator used to separate en-
tries of the rows.
Applying simple moving averages with a = 2, 12, and 40 to the closing values of
the tui – dataset implies using following filters:

• a = 2 : λi = {1
5
, 1

5
, 1

5
, 1

5
, 1

5
}

• a = 12 : λi = { 1

25
, . . . ,

1

25
}

︸ ︷︷ ︸
25 times

• a = 40 : λi = { 1

81
, . . . ,

1

81
}

︸ ︷︷ ︸
81 times

The resulting filtered values are (approximately) weekly (a = 2), monthly (a = 12)
and quarterly (a = 40) averages of returns. Filtering is carried out in R with the
filter() – command.

filter()

0 100 200 300 400 500 600

20
30

40
50

Index

tu
i[,

 4
]

Figure 3.1: Closing values and averages for a = 2, 12 and 40.

The following code was used to create figure 3.1 which plots the closing values
of the TUI shares and the averages, displayed in different colours.

plot(tui[,5], type = "l")
tui.1 <- filter(tui[,5], filter = rep(1/5, 5))

3.1. CLASSICAL DECOMPOSITION – 25 –

tui.2 <- filter(tui[,5], filter = rep(1/25, 25))
tui.3 <- filter(tui[,5], filter = rep(1/81, 81))

lines(tui.1, col = "red")
lines(tui.2, col = "purple")
lines(tui.3, col = "blue")

Decomposition of Time Series

Another possibility for evaluating the trend of a time series is to use a nonpara-
metric regression technique (which is also a special type of linear filter). The
function stl() performs a seasonal decomposition of a given time series Xt by stl()

determining the trend Tt using “loess” regression and then computing the sea-
sonal component St (and the residuals et) from the differences Xt − Tt.
Performing the seasonal decomposition for the time series beer (monthly beer
production in Australia from Jan. 1956 to Aug. 1995) is done using the following
commands:

beer <- read.csv("C:/R_workshop/beer.csv", header = TRUE,
dec = ",", sep = ";")

beer <- ts(beer[,1], start = 1956, freq = 12)
plot(stl(log(beer), s.window = "periodic"))

The data is read from C:/R workshop/beer.csv and then transformed with
ts() into a ts – object. This “transformation” is required for most of the time ts()

series functions, since a time series contains more information than the values
itself, namely information about dates and frequencies at which the time series
has been recorded.

3.1. CLASSICAL DECOMPOSITION – 26 –

4.
2

4.
6

5.
0

5.
4

da
ta

−
0.

2
0.

0
0.

2

se
as

on
al

4.
5

4.
7

4.
9

5.
1

tr
en

d

−
0.

2
0.

0

1960 1970 1980 1990

re
m

ai
nd

er

time

Figure 3.2: Seasonal decomposition using stl() .

Regression analysis

R offers the functions lsfit() (least squares fit) and lm() (linear models, a lsfit()

lm()
more general function) for regression analysis. This section focuses on lm() ,
since it offers more “features”, especially when it comes to testing significance of
the coefficients.
Consider again the beer data. Assume that we want to fit the following model
(a parabola) to the logs of beer: log(Xt) = α0 + α1 · t + α2 · t2 + et

The fitting can be carried out in R with the following commands:

lbeer <- log(beer)
t <- seq(1956, 1995 + 7/12, length = length(lbeer))
t2 <- tˆ2
plot(lbeer)
lm(lbeer˜t+t2)
lines(lm(lbeer˜t+t2)$fit, col = 2, lwd = 2)

3.1. CLASSICAL DECOMPOSITION – 27 –

Time

lb
ee

r

1960 1970 1980 1990

4.
2

4.
6

5.
0

5.
4

Figure 3.3: Fitting a parabola to lbeer with lm() .

In the first command above, logs of beer are computed and stored as lbeer .
Explanatory variables (t and t2 as t and t2) are defined in the second and third
row. The actual fit of the model is done using lm(lbeer˜t+t2) . The func-
tion lm() returns a list – object, whose element can be accessed using the “$”–
sign: lm(lbier˜t+t2)$coefficients returns the estimated coefficients (α0,
α1 and α2); lm(lbier˜t+t2)$fit returns the fitted values X̂t of the model.
Extending the model to

log(Xt) = α0 + α1 · t + α2 · t2 + β · cos
(

2πt

12

)
+ γ · sin

(
2πt

12

)
+ et

so that it includes the first Fourier frequency is straightforward. After defining
the two additional explanatory variables, cos.t and sin.t , the model can be
estimated in the usual way:

lbeer <- log(beer)
t <- seq(1956, 1995 + 7/12, length = length(lbeer))
t2 <- tˆ2
sin.t <- sin(2*pi*t)
cos.t <- cos(2*pi*t)
plot(lbeer)
lines(lm(lbeer˜t+t2+sin.t+cos.t)$fit, col = 4)

Note that in this case sin.t and cos.t do not include 12 in the denominator,
since 1

12
has already been considered during the transformation of beer and the

3.1. CLASSICAL DECOMPOSITION – 28 –

Time

lb
ee

r

1960 1970 1980 1990

4.
2

4.
6

5.
0

5.
4

Figure 3.4: Fitting a parabola and the first fourier frequency to lbeer .

construction of t .

Another important aspect in regression analysis is to test the significance of the
coefficients.
In the case of lm() , one can use the summary() – command: summary()

summary(lm(lbeer˜t+t2+sin.t+cos.t))

which returns the following output:

Call:
lm(formula = lbeer ˜ t + t2 + sin.t + cos.t)

Residuals:
Min 1Q Median 3Q Max

-0.2722753 -0.0686953 -0.0006432 0.0695916 0.2370383

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.734e+03 1.474e+02 -25.330 < 2e-16 ***
t 3.768e+00 1.492e-01 25.250 < 2e-16 ***
t2 -9.493e-04 3.777e-05 -25.137 < 2e-16 ***
sin.t -4.870e-02 6.297e-03 -7.735 6.34e-14 ***
cos.t 1.361e-01 6.283e-03 21.655 < 2e-16 ***

3.2. EXPONENTIAL SMOOTHING – 29 –

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.09702 on 471 degrees of freedom
Multiple R-Squared: 0.8668, Adjusted R-squared: 0.8657
F-statistic: 766.1 on 4 and 471 DF, p-value: < 2.2e-16

Apart from the coefficient estimates and their standard error, the output also in-
cludes the corresponding t-statistics and p–values. In our case, the coefficients α0

(Intercept), α1 (t), α2 (t2) and β (sin(t)) differ significantly from zero, while γ does
not seem to. (One might include γ anyway, since Fourier frequencies are usually
taken in pairs of sine and cosine.)

3.2 Exponential Smoothing

Introductory Remarks

One method of forecasting the next value xn+1, of a time series xt, t = 1, 2, . . . , n
is to use a weighted average of past observations:

x̂n(1) = λ0 · xn + λ1 · xn−1 + . . .

The popular method of exponential smoothing assigns geometrically decreasing
weights:

λi = α(1− α)i ; 0 < α < 1

such that x̂n(1) = α · xn + α(1− α) · xn−1 + α(1− α)2 · xn−2 + . . .

In its basic form exponential smoothing is applicable to time series with no sys-
tematic trend and/or seasonal components. It has been generalized to the “Holt–
Winters”–procedure in order to deal with time series containing trend and sea-
sonal variation. In this case, three smoothing parameters are required, namely α
(for the level), β (for the trend) and γ (for the seasonal variation).

Exponential Smoothing and Prediction of Time Series

The ts – package offers the function HoltWinters(x,alpha,beta,gamma) , HoltWinters()

which lets one apply the Holt–Winters procedure to a time series x . One can spec-
ify the three smoothing parameters with the options alpha , beta and gamma.
Particular components can be excluded by setting the value of the corresponding
parameter to zero, e.g. one can exclude the seasonal component by specifying
gamma=0. If one does not specify smoothing parameters, these are computed
“automatically” (i.e. by minimizing the mean squared prediction error from the
one–step–ahead forecasts).

Thus, the exponential smoothing of the beer dataset can be performed as fol-
lows:

3.2. EXPONENTIAL SMOOTHING – 30 –

beer <- read.csv("C:/beer.csv", header = TRUE, dec = ",",
sep = ";")

beer <- ts(beer[,1], start = 1956, freq = 12)

The above commands load the dataset from the CSV–file and transform it to a
ts – object.

HoltWinters(beer)

This performs the Holt–Winters procedure on the beer dataset. It displays a list
with e.g. the smoothing parameters (α ≈ 0.076, β ≈ 0.07 and γ ≈ 0.145 in this
case). Another component of the list is the entry fitted , which can be accessed
using HoltWinters(beer)$fitted :

plot(beer)
lines(HoltWinters(beer)$fitted[,1], col = "red")

Time

be
er

1960 1970 1980 1990

10
0

15
0

20
0

Figure 3.5: Exponential smoothing of the beer data.

R offers the function predict() , which is a generic function for predictions from
various models. In order to use predict() , one has to save the “fit” of a model
to an object, e.g.:

beer.hw <- HoltWinters(beer)

In this case, we have saved the “fit” from the Holt–Winters procedure on beer as
beer.hw .

3.3. ARIMA–MODELS – 31 –

predict(beer.hw, n.ahead = 12) predict()

returns the predicted values for the next 12 periods (i.e. Sep. 1995 to Aug. 1996).
The following commands can be used to create a graph with the predictions for
the next 4 years (i.e. 48 months):

plot(beer, xlim=c(1956, 1999))
lines(predict(beer.hw, n.ahead = 48), col = 2)

Time

be
er

1960 1970 1980 1990 2000

10
0

15
0

20
0

Figure 3.6: Predicting beer with exponential smoothing.

3.3 ARIMA–Models

Introductory Remarks

Forecasting based on ARIMA (autoregressive integrated moving average) mod-
els, sometimes referred to as the Box–Jenkins approach, comprises following stages:

i.) Model identification

ii.) Parameter estimation

iii.) Diagnostic checking

These stages are repeated iteratively until a satisfactory model for the given data
has been identified (e.g. for prediction). The following three sections show some
facilities that R offers for carrying out these three stages.

3.3. ARIMA–MODELS – 32 –

Analysis of Autocorrelations and Partial Autocorrelations

A first step in analysing time series is to examine the autocorrelations (ACF) and
partial autocorrelations (PACF). R provides the functions acf() and pacf() for acf()

pacf()
computing and plotting of ACF and PACF. The order of “pure” AR and MA pro-
cesses can be identified from the ACF and PACF as shown below:

sim.ar <- arima.sim(list(ar = c(0.4, 0.4)), n = 1000) arima.sim()

sim.ma <- arima.sim(list(ma = c(0.6, -0.4)), n = 1000)
par(mfrow = c(2, 2))
acf(sim.ar, main = "ACF of AR(2) process")
acf(sim.ma, main = "ACF of MA(2) process")
pacf(sim.ar, main = "PACF of AR(2) process")
pacf(sim.ma, main = "PACF of MA(2) process")

The function arima.sim() was used to simulate the ARIMA(p,d,q)–models:

0 5 10 20 30

0.
0

0.
8

Lag

A
C

F

ACF of AR(2) process

0 5 10 20 30

−
0.

2
1.

0

Lag

A
C

F

ACF of MA(2) process

0 5 10 20 30

0.
0

0.
6

Lag

P
ar

tia
l A

C
F

PACF of AR(2) process

0 5 10 20 30

−
0.

4
0.

1

Lag

P
ar

tia
l A

C
F

PACF of MA(2) process

Figure 3.7: ACF and PACF of AR– and MA–models.

In the first line 1000 observations of an ARIMA(2,0,0)–model (i.e. AR(2)–model)
were simulated and saved as sim.ar . Equivalently, the second line simulated
1000 observations from a MA(2)–model and saved them to sim.ma .
An useful command for graphical displays is par(mfrow=c(h,v)) which splits
the graphics window into (h×v) regions — in this case we have set up 4 separate
regions within the graphics window.

3.3. ARIMA–MODELS – 33 –

The last four lines create the ACF and PACF plots of the two simulated processes.
Note that by default the plots include confidence intervals (based on uncorrelated
series).

Estimating Parameters of ARIMA–Models

Once the order of the ARIMA(p,d,q)–model has been specified, the parameters
can be estimated using the function arima() from the ts –package: arima()

arima(data, order = c(p, d, q))

Fitting e.g. an ARIMA(1,0,1)–model on the LakeHuron –dataset (annual levels
of the Lake Huron from 1875 to 1972) is done using

data(LakeHuron) data()

fit <- arima(LakeHuron, order = c(1, 0, 1))

In this case fit is a list containing e.g. the coefficients (fit$coef), residuals
(fit$residuals) and the Akaike Information Criterion AIC (fit$aic).

Diagnostic Checking

A first step in diagnostic checking of fitted models is to analyse the residuals
from the fit for any signs of non–randomness. R has the function tsdiag() , tsdiag()

which produces a diagnostic plot of a fitted time series model:

fit <- arima(LakeHuron, order = c(1, 0, 1))
tsdiag(fit)

It produces the output shown in figure 3.8: A plot of the residuals, the auto-
correlation of the residuals and the p-values of the Ljung–Box statistic for the first
10 lags.
The Box–Pierce (and Ljung–Box) test examines the Null of independently dis-
tributed residuals. It’s derived from the idea that the residuals of a “correctly
specified” model are independently distributed. If the residuals are not, then
they come from a miss–specified model. The function Box.test() computes Box.test()

the test statistic for a given lag:

Box.test(fit$residuals, lag = 1)

Prediction of ARIMA–Models

Once a model has been identified and its parameters have been estimated, one
can predict future values of a time series. Let’s assume that we are satisfied with

3.3. ARIMA–MODELS – 34 –

Standardized Residuals

Time

1880 1900 1920 1940 1960

−
2

1

0 5 10 15

−
0.

2
0.

6

Lag

A
C

F

ACF of Residuals

2 4 6 8 10

0.
0

0.
6

p values for Ljung−Box statistic

lag

p
va

lu
e

Figure 3.8: Output from tsdiag() .

the fit of an ARIMA(1,0,1)–model to the LakeHuron –data:

fit <- arima(LakeHuron, order = c(1, 0, 1))

As with Exponential Smoothing, the function predict() can be used for pre- predict()

dicting future values of the levels under the model:

LH.pred <- predict(fit, n.ahead = 8)

Here we have predicted the levels of Lake Huron for the next 8 years (i.e. until
1980). In this case, LH.pred is a list containing two entries, the predicted values
LH.pred$pred and the standard errors of the prediction LH.pred$se . Using
the familiar rule of thumb for an approximate confidence interval (95%) for the
prediction, “prediction ± 2·SE”, one can plot the Lake Huron data, the predicted
values and the corresponding approximate confidence intervals:

plot(LakeHuron, xlim = c(1875, 1980), ylim = c(575, 584))
LH.pred <- predict(fit, n.ahead = 8)

3.3. ARIMA–MODELS – 35 –

lines(LH.pred$pred, col = "red")
lines(LH.pred$pred + 2*LH.pred$se, col = "red", lty = 3)
lines(LH.pred$pred - 2*LH.pred$se, col = "red", lty = 3)

First, the levels of Lake Huron are plotted. In order to leave some space for
adding the predicted values, the x-axis has been set to the interval 1875 to 1980
using the optional argument xlim=c(1875,1980) ; the use of ylim below is
purely for visual enhancement. The prediction takes place in the second line us-
ing predict() on the fitted model. Adding the prediction and the approximate
confidence interval is done in the last three lines. The confidence bands are drawn
as a red, dotted line (using the options col="red" and lty=3):

Time

La
ke

H
ur

on

1880 1900 1920 1940 1960 1980

57
6

57
8

58
0

58
2

58
4

Figure 3.9: Lake Huron levels and predicted values.

Chapter 4

Advanced Graphics

4.1 Customizing Plots

Labelling graphs
R offers various means for annotating graphs. Consider a histogram of 100 nor-
mally distributed random numbers given by

hist(rnorm(100), prob = TRUE)

Assume that we want to have a custom title and different labels for the axes as
shown in figure 4.1. The relevant options are main (for the title), xlab and ylab main

xlab
(axes labels):

ylabhist(rnorm(100), prob = TRUE, main = "custom title",
xlab = "x label", ylab = "y label")

The title and the labels are entered as characters, i.e. in quotation marks. To
include quotation marks in the title itself, a backslash is required before each
quotation mark: \" . The backslash is also used for some other commands, such
as line breaks. Using \n results in a line feed, e.g.

main = "first part \n second part"

within a plot command writes “first part” in the first line of the title and “sec-
ond part” in the second line.

Setting font face and font size
The option font allows for (limited) control over the font type used for annota- font

tions. It is specified by an integer. Additionally, different font types can be used
for different parts of the graph:

• font.axis # specifies the font for the axis annotations font.axis

• font.lab # specifies the font for axis labels font.lab

36

4.1. CUSTOMIZING PLOTS – 37 –

custom title

x label

y
la

be
l

−3 −2 −1 0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

Figure 4.1: Customizing the main title and the axes labels using main , xlab and
ylab .

• font.main # specifies the font for the (main) title font.main

• font.sub # specifies the font for the subtitle font.sub

The use of the font –options is illustrated in the example below:

hist(rnorm(100), sub = "subtitle", font.main = 6,
font.lab = 7, font.axis = 8, font.sub = 9) sub

Integer codes used in this example are:

• 6 : “Times” font

• 7 : “Times” font, italic

• 8 : “Times” font, boldface

• 9 : “Times” font, italic and boldface

The text size can be controlled using the cex option (“character expansion”). cex

Again, the cex option also has “subcategories” such as cex.axis , cex.lab ,
cex.axis

cex.lab
cex.main and cex.sub . The size of text is specified using a relative value (e.g.

cex.main

cex.sub

cex=1 doesn’t change the size, cex=0.8 reduces the size to 80% and cex=1.2
enlarges the size to 120%).
A complete list of “graphical parameters” is given in the help–file for the par() –
command, i.e. by typing

4.1. CUSTOMIZING PLOTS – 38 –

?par par()

into the console.
Another useful command for labelling graphs is text(a, b, "content") , text()

which adds “content” to an existing plot at the given coordinates (x = a, y = b):

hist(rnorm(500), prob = TRUE)
text(2, 0.2, "your text here")

Histogram of rnorm(500)

rnorm(500)

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

your text here

Figure 4.2: Adding text to an existing plot using text() .

Specification of Colours
There exist various means of specifying colours in R. One way is to use the “R
names” such as col="blue" , col="red" or even col="mediumslateblue" . col

(A complete list of available colour names is obtained with colours() .) Alter-
colours()

natively, one can use numerical codes to specify the colours, e.g. col=2 (for red),
col=3 (for green) etc. Colours can also be specified in hexadecimal code (as in
html), e.g. col="#FF0000" denotes to red. Similarly, one can use col=rgb(1,0,0) rgb()

for red. The rgb() command is especially useful for custom colour palettes.
R offers a few predefined colour palettes. These are illustrated on the volcano –
data example below:

data(volcano) data()

par(mfrow = c(2, 2))
image(volcano, main = "heat.colors")
image(volcano, main = "rainbow", col = rainbow(15))
image(volcano, main = "topo", col = topo.colors(15))
image(volcano, main = "terrain.colors",

col = terrain.colors(15))

4.2. MATHEMATICAL ANNOTATIONS – 39 –

heat.colors rainbow

topo.col terrain.colors

Figure 4.3: Some predefined colour palettes available in R.

The resulting image maps with different colour palettes are shown in figure 4.3.
The (internal) dataset “volcano”, containing topographic information for Maunga
Whau on a 10m by 10m grid, is loaded by entering data(volcano) . The com-
mand par(mfrow=c(a,b)) is used to split the graphics window into a · b re-
gions (a “rows” and b “columns”). The image() function creates an image map image()

of a given matrix.

4.2 Mathematical Annotations

Occasionally, it is useful to add mathematical annotations to plots. Let’s assume
we want to investigate the relationship between HP(horsepower) and MPG(miles
per gallon) from the car dataset by fitting the following two models to the data

M1: MPGi = β0 + β1 ·HPi + ei

M2: MPGi = β0 + β1 ·HPi + β2 ·HP 2
i + ei

Fitting the model and plotting the observations along with the two fitted models
is done with

car <- read.table("C:/R workshop/car.dat", header = TRUE)
attach(car)
M1 <- lm(MPG˜HP)
HP2 <- HPˆ2

4.2. MATHEMATICAL ANNOTATIONS – 40 –

M2 <- lm(MPG˜HP+HP2)
plot(HP, MPG, pch = 16)
x <- seq(0, 350, length = 500)
y1 <- M1$coef[1] + M1$coef[2]*x
y2 <- M2$coef[1] + M2$coef[2]*x + M2$coef[3]*xˆ2
lines(x, y1, col="red")
lines(x, y2, col="blue")

In order to add mathematical expressions, R offers the function expression() expression()

which can be used e.g. in conjunction with the text command:

text(200, 55, expression(bold(M[1])*":"*hat(MPG)==
hat(beta)[0] + hat(beta)[1]*"HP"),
col = "red", adj = 0)

text(200, 50, expression(bold(M[2])*":"*hat(MPG)==
hat(beta)[0] + hat(beta)[1]*"HP" + hat(beta)[2]*"HP"ˆ2),
col = "blue", adj = 0)

50 100 150 200 250 300

20
30

40
50

60

HP

M
P

G

M1:MPG^ = β̂0 + β̂1HP

M2:MPG^ = β̂0 + β̂1HP + β̂2HP2

Figure 4.4: Using expression() for mathematical annotations.

Further options for annotating plots can be found in the examples given in the
help documentation of the legend() function. A list of available expressions is legend()

given in the appendix.

4.3. THREE-DIMENSIONAL PLOTS – 41 –

4.3 Three-Dimensional Plots

Perspective plots
The R function persp() can be used to create 3D plots of surfaces. A 3D display persp()

of the volcano – data can be created with

data(volcano)
persp(volcano)
persp(volcano, theta = 70, phi = 40)

volcano

Y

Z

volcano

Y

Z

Figure 4.5: 3D plots with persp() .

The 3D space can be “navigated” by changing the parameters theta (azimuthal theta

direction) and phi (colatitude).
phi

Further options are illustrated in the example below:

par(mfrow=c(1,2))

example 1:
persp(volcano, col = "green", border = NA, shade = 0.9,

theta = 70, phi = 40, ltheta = 120, box = FALSE,
axes = FALSE, expand = 0.5)

example 2:
collut <- terrain.colors(101)
temp <- 1 + 100*(volcano-min(volcano)) /

(diff(range(volcano)))
mapcol <- collut[temp[1:86, 1:61]]
persp(volcano, col = mapcol, border = NA, theta = 70,

phi = 40,shade = 0.9, expand = 0.5, ltheta = 120,

4.3. THREE-DIMENSIONAL PLOTS – 42 –

lphi = 30)

volcano[i, j]

Y

Z
Figure 4.6: Advanced options for persp() .

Plotting functions of two variables
In order to display two–dimensional functions f(x, y) with persp() the follow-
ing R objects are required: x, y (grid mark vectors) and the values z = f(x, y)
which are stored as a matrix. A useful function here is outer(x,y,f) , which outer()

computes the values of z = f(x, y) for all pairs of entries in the vectors x and y.
In the example given below the vectors x and y are specified and then the func-
tion f is defined. The command outer() creates a matrix, which is stored as z .
It contains the values of f(x, y) for all points on the specified x–y grid. Finally,
persp() is used to generate the plot (figure 4.7):

y <- x <- seq(-2, 2, length = 20)
f <- function(x, y)

{
fxy <- -xˆ2 - yˆ2
return(fxy)
}

z <- outer(x, y, f)
persp(x, y, z, theta = 30, phi = 30)

4.4. RGL: 3D VISUALIZATION IN R USING OPENGL – 43 –

x

y

z

Figure 4.7: Plotting 2D functions with persp() .

4.4 RGL: 3D Visualization in R using OpenGL

RGL is an R package which was designed to overcome some limitations for 3D
graphics. It uses OpenGL c© as the rendering backend and is freely available at
the URI

http://134.76.173.220/˜dadler/rgl/index.html

Further information on RGL can be found the website and on the slides “RGL:
An R-Library for 3D Visualization in R” (’rgl.ppt’) in your working directory.

Appendix A

R–functions

A.1 Mathematical Expressions (expression())

• ARITHMETIC OPERATORS:
Expression Result

x+y x + y
x-y x− y
x*y xy
x/y x/y
x%+-%y x± y
x%/%y x÷ y
x%*%y x× y
-x −x
+x +x

• SUB- AND SUPERSCRIPTS:
Expression Result

x[i] xi

xˆ2 x2

• JUXTAPOSITION:
Expression Result

x*y xy
paste(x,y,z) xyz

• LISTS:
Expression Result

list(x,y,z) x,y, z

• RADICALS:
Expression Result

sqrt(x)
√

x
sqrt(x,y) y

√
x

• RELATIONS:
Expression Result

x==y x = y
x!=y x 6= y
x<y x < y
x<=y x ≤ y
x>y x > y
x>=y x ≥ y
x%˜˜%y x ≈ y
x%˜=%y x ∼= y
x%==%y x ≡ y
x%prop%y x ∝ y

• SYMBOLIC NAMES:
Expression Result

Alpha-Omega A−Ω
alpha-omega α− ω
infinity ∞
32*degree 32 o

60*minute 32 ′

30*second 32 ′′

• ELLIPSIS:
Expression Result

list(x[1],...,x[n]) x1, . . . ,xn

x[1]+...+x[n] x1 + · · ·+ xn

list(x[1],cdots,x[n]) x1, · · · ,xn

x[1]+ldots+x[n] x1 + . . . + xn

44

A.1. MATHEMATICAL EXPRESSIONS (expression()) – 45 –

• SET RELATIONS:
Expression Result

x%subset%y x ⊂ y
x%subseteq%y x ⊆ y
x%supset%y x ⊃ y
x%supseteq%y x ⊇ y
x%notsubset%y x 6⊂ y
x%in%y x ∈ y
x%notin%y x 6∈ y

• ACCENTS:
Expression Result

hat(x) x̂
tilde(x) x̃
ring(x)

o
x

bar(x) x̄
widehat(xy) x̂y
widetilde x̃y

• ARROWS:
Expression Result

x%<->%y x ↔ y
x%->%y x → y
x%<-%y x ← y
x%up%y x ↑ y
x%down%y x ↓ y
x%<=>%y x ⇔ y
x%=>%y x ⇒ y
x%<=%y x ⇐ y
x%dblup%y x ⇑ y
x%dbldown%y x ⇓ y

• SPACING:
Expression Result

x˜ ˜y x y
x+phantom(0)+y x + + y
x+over(1,phantom(0)) x + 1

• FRACTIONS:
Expression Result

frac(x,y) x
y

over(x,y) x
y

atop(x,y) x
y

• STYLE:
Expression Result

displaystyle(x) x
textstyle(x) x
scriptstyle(x) x

scriptscriptstyle(x) x

• TYPEFACE:
Expression Result

plain(x) x
italic(x) x
bold(x) x
bolditalic(x) x

• BIG OPERATORS:
Expression Result

sum(x[i],i=1,n)
n∑
1

xi

prod(plain(P)(X==x),x)
∏
x

P(X=x)

integral(f(x)*dx,a,b)
∫ b
a f(x)dx

union(A[i],i==1,n)
n⋃

i=1

Ai

intersect(A[i],i==1,n)
n⋂

i=1

Ai

lim(f(x),x%->%0) lim
x→0

f(x)

min(g(x),x>=0) min
x≥0

g(x)

inf(S) inf S
sup(S) supS

• GROUPING:
Expression Result

(x+y)*z (x + y)z
xˆy+z xy + z
xˆ(y+z) x(y+z)

x˜ {y+z } xy+z

group("(",list(a,b),"]") (a,b]
bgroup("(",atop(x,y),")"))

(
x
y

)

group(lceil,x,rceil) dxe
group(lfloor,x,rfloor) bxc

group("|",x,"|") |x|

A.2. THE RGL FUNCTIONSET – 46 –

A.2 The RGL Functionset

• DEVICE MANAGEMENT:
rgl.open() Opens a new device.
rgl.close() Closes the current device.
rgl.cur() Returns the number of the active device.
rgl.set(which) Sets a device as active.
rgl.quit() Shuts down the subsystem and detaches RGL.

• SCENE MANAGEMENT:
rgl.clear(type="shapes") Clears the scene from the stack of specified type (“shapes”

or “lights”).
rgl.pop(type="shapes") Removes the last added node from stack.

• EXPORT FUNCTIONS:
rgl.snapshot(file) Saves a screenshot of the current scene in PNG–format.

• SHAPE FUNCTIONS:
rgl.points(x,y,z,...) Add points at (x, y, z).

rgl.lines(x,y,z,...) Add lines with nodes (xi, yi, zi), i = 1, 2.
rgl.triangles(x,y,z,...) Add triangles with nodes (xi, yi, zi), i = 1, 2, 3.
rgl.quads(x,y,z,...) Add quads with nodes (xi, yi, zi), i = 1, 2, 3, 4.
rgl.spheres(x,y,z,r,...) Add spheres with center (x, y, z) and radius r.
rgl.texts(x,y,z,text,...) Add texts at (x, y, z).
rgl.sprites(x,y,z,r,...) Add 3D sprites at (x, y, z) and half-size r.
rgl.surface(x,y,z,...) Add surface defined by two grid mark vectors x and y and

a surface height matrix z.

• ENVIRONMENT SETUP:
rgl.viewpoint(theta,phi,

fov,zoom,interactive)
Sets the viewpoint (theta , phi) in polar coordinates with
a field–of–view angle fov and a zoom factor zoom. The
logical flag interactive specifies whether or not navi-
gation is allowed.

rgl.light(theta,phi,...) Adds a light source to the scene.
rgl.bg(...) Sets the background.
rgl.bbox(...) Sets the bounding box.

• APPEARANCE FUNCTIONS:
rgl.material(...) Generalized interface for appearance parameters.

	An Introduction to R
	Linear Models
	Time Series Analysis
	Advanced Graphics

