• Geoinformers

Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics using spectroscopic Remo


Summary

In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

Click to get full paper

Highlights of the study

  1. VNIR and SWIR spectroscopy was proposed for quantification of sugar in rice.

  2. Novel spectral indices in NIR range (RSI and NDSI) were calibrated and validated.

  3. ANN, MARS, MLR, PLSR, RFR and SVMR were employed for model development.

  4. ANN, SVMR and MARS model was superior with respect to accuracy and robustness.



1 view

Contact: geoinformers@gmail.com, New Delhi, India

© 2023 by Scientist Personal. Proudly created with Wix

  • Facebook Social Icon
  • Twitter Social Icon
  • YouTube Social  Icon
  • Instagram
  • Researchgate icon-180x180

Geoinformatics and Remote Sensing